«Сложные эфиры»: урок химии в 10 классе

С. А. Дайнович,

учитель химии высшей категории СШ №1 г. Скиделя

Тема. Сложные эфиры

Тип урока: урок изучения нового материала, комбинированный урок **Цели урока**

Обучающие цели: систематизация знаний о сложных эфирах, их строении, нахождении в природе и свойствах; об особенностях их физических свойств и о роли в живой природе.

Развивающие цели: создание на уроке диалогового взаимодействия, содействие развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Воспитывающие цели: создание условий для самостоятельной работы учащихся, укрепление навыков работы учащихся с текстом, формирование коммуникативных навыков.

Задачи урока:

	. .					
	закрепить знан	ия учащих	ся о сло	ожных эфи	рах, получе	нные при
изучении	гем «Спирты и ка	рбоновые	кислоть	ı»;		
	дать понятие	о физи	ческих	свойствах	сложных	эфиров,
механизме	реакции этериф	икации;				
	сформировать	представл	ение о	сложных	эфирах, их	составе,
изомерии	и номенклатуре.					
	способствовать	разви	гию	эрудиции,	логичесн	сого и
ассоциати	вного мышления	учащихся				
Мето	лы и приемы	сповесн	ые наг	пялные и	ппюстратив	ные – в

Методы и приемы: словесные, наглядные, иллюстративные — в логической взаимосвязи.

Требования к уровню подготовки. Уметь составлять формулы сложных эфиров, называть их, составлять уравнения реакций этерификации. Знать определение сложных эфиров, их классификацию, строение, физические свойства, нахождение в природе. Уметь записывать структурные формулы эфиров

Оборудование: компьютер, мультимедийный проектор, раздаточный материал.

ХОД УРОКА

Вступительное слово учителя. цеоеполагание Подготовка к восприятию нового материала

1) Индивидуальный опрос (у доски):

1-й учащийся – решение задачи.

<u>Задача.</u> Определите молекулярную формулу сложного вещества, содержащего по массе 54,4% углерода, 36,4% кислорода и 9,1% водорода. Относительная плотность его пара по водороду равна 44. Укажите класс вещества и общую формулу. (**Ответ:** $C_4H_8O_2$ бутановая кислота)

2-й учащийся – <u>задание:</u> осуществить превращения:

$$Al_4C_3 \rightarrow CH_4 \rightarrow C_2H_2 \rightarrow CH_3CHO \rightarrow CH_3COOH \rightarrow CH_3COOC_2H_5$$

Фронтальная беседа по вопросам:

- ✓ Какие классы кислородосодержащих органических веществ вы уже изучили? Перечислите их, указав на их функциональные группы и общие формулы
- ✓ Какое явление в химии называют изомерией?
- ✓ Дайте определение: изомеры это....
- ✓ Какие виды изомерии вам известны?

Учитель. Я хотел бы привести отрывок из истории носильщика и трёх женщин из Багдада, одной из прекраснейших сказок «Тысяча и одна ночь».

«Она остановилась около торговца благовониями и взяла у него десять разных вод: розовую воду, смешанную с мускусом, апельсиновую воду, воду из белых кувшинок, из цветов вербы и фиалок и еще пять других. И она купила еще головку сахара, склянку для опрыскивания, мешок ладана, серую амбру, мускус и восковые свечи из Александрии и все это положила в корзину и сказала: «Возьми корзину и иди за мной...»

Много веков назад арабы уже знали различные способы получения душистых веществ из растений и выделений животных. В парфюмерных лавках восточных базаров многочисленные торговцы предлагали богатейший выбор изысканных душистых веществ.

В разное время предлагалось несколько вариантов классификации веществ по запаху. В Японии давно известна следующая классификация: благоуханные, животные, пригорелые запахи сырого мяса и рыбы, земли и гнили. Одна из самых старых классификаций предусматривала семь классов, а одна из более поздних — девять. Была даже предпринята попытка разделения запахов по шкале музыкальных нот. Все попытки классифицировать запахи были обречены на провал, потому что приходится оперировать весьма субъективными понятиями: запах зелени, цветочный, скошенной травы. Ученые не смогли создать «искусственный нос»

Мир химии богат и разнообразен. Немало загадок и тайн приготовил он человеку. Но человек любознателен и настойчив.

У меня в руках и у вас на столах сладкая газированная вода со вкусом и запахом груши. Как вы думаете, что за вещество придает сладкой газированной воде приятный аромат и вкус груши? (Ароматизатор груши.) Какую формулу он имеет и к какому классу оно относится? Чтобы ответить на этот вопрос, выполним задание (у каждого учащегося на столе).

Вам на листочке необходимо обвести кружком буквы на пересечении возможных реакций и выписать получившееся слово по буквам слева направо из каждого ряда.

	Название и формула вещества				
Реагент	Этанол	Фенол	Этаналь	Этановая кислота	
Водород	С	Ц	И	Л	
Натрий	3	O	Ж	П	
Цинк	Ж	Н	Ы	E	
Оксид меди (II) при нагревании	Н	О	Й	T	
Гидроксид натрия	Э	И	Ф	Л	
Гидроксид меди (II) при обычных условиях	Ц	Ы	Б	A	
Гидроксид меди (II) при нагревании	Ч	Л	Ц	P	
Азотная кислота	Е	T	Ц	T	
Этанол	A	T	A	T	

Вывод: ИЗОПЕНТИЛАЦЕТАТ. К какому классу относится это вещество? Из каких исходных веществ оно образовано? Для того чтобы получить изопентилацетат, необходимо взять изопентиловый (амиловый) спирт и уксусную кислоту.

Исходя из данного примера, определите общую формулу эфира $C_nH_{2n}O_2$

П. Изучение нового материала

Задание 1. Записав общую формулу эфиров, дайте им определение.

Сложные эфиры — это вещества, которые образуются в результате взаимодействия органических карбоновых кислот или кислородсодержащих неорганических кислот со спиртами (реакции этерификации).

$$R_1\text{-}O\text{-}H + H\text{-}O\text{-}NO_2 \to R_1\text{-}O\text{-}NO_2 + H_2O$$
 $R\text{-}C$ $+$ H $O\text{-}R'$ $\stackrel{\text{H}^+}{\longleftarrow}$ $R\text{-}C$ $O\text{-}R'$ $+$ H_2O Карбоновая кислота Сложный эфир

Сложные эфиры — жидкости, обладающие приятными фруктовыми запахами. В воде они растворяются очень плохо, но хорошо растворимы в спиртах. Сложные эфиры очень распространены в природе. Они даже могут находиться в коре некоторых деревьев. Их наличием обусловлены приятные запахи цветов и фруктов.

Задание 2. Запиите названия эфиров в тетрадь.

Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Воски не растворяются в воде. Их можно формовать в нагретом состоянии. Примерами животных восков могут служить пчелиный воск, а также ворвань, содержащийся в черепной коробке кашалота (кашалотовый воск).

Общая формула сложных эфиров одноатомных спиртов и одноосновных карбоновых кислот:

 R_1 -COO- R_2 , где R_1 и R_2 углеводородные радикалы, исключение — эфиры муравьиной кислоты, где вместо R_1 стоит H. или $C_nH_{2n}O_2$ (совпадает с общей формулой карбоновых кислот)

Названия сложных эфиров составляют из:1 — наименований спирта, слова «эфир», и кислоты, 2 — наименование радикала спирта и корня латинского названия кислоты с добавлением окончания *ат*, 3 — наименований кислоты и спиртового радикала с добавлением слова «эфир».

CH3-C O-C2H5

метиловый эфир муравьиной кислоты уксусной кислоты.

метилформиат муравьинометиловый эфир этиловый эфир

этилацетат уксусноэтиловый эфир

Изомерия и номенклатура сложных эфиров С₅H₁₀O₂

Структурная изомери	<u>межклассовая</u>		
Цепи	Положения	изомерия	
	группы		
$CH_3 - COO - CH_2 -$	$C_2H_5 - COO - C_2H_5$	$CH_3 - CH_2 - CH_2 -$	
$CH_2 - CH_3$	Этиловый эфир	CH ₂ – COOH	
Пропиловый эфир	пропионовой кислоты	н-Пентановая	
уксусной кислоты	Этилпропионат	кислота и ее изомеры	
Пропилацетат	<u>Этилпропаноат</u>		
<u>Пропилэтаноат</u>	Пропаноэтиловый	Сложные эфиры	
Уксуснопропиловый	эфир	изомерны карбоновым	
эфир		кислотам:	
	$CH_3 - CH_2 - CH_2 -$		
$CH_3 - COO - CH -$	COO – CH ₃	$C_2H_5 - COO - C_2H_5$	
$(CH_3)_2$	Метиловый эфир	Этиловый эфир	
Изопропиловый эфир	бутановой кислоты	пропионовой кислоты	
уксусной кислоты	Метилбутират	Этилпропионат	
Изопропилацетат	<u>Метилбутаноат</u>	<u>Этилпропаноат</u>	
<u>Изопропилэтаноат</u>	Бутанометиловый	Пропаноэтиловый	
Уксусноизопропилов	эфир	эфир	
ый эфир			

Учитель. Прошу обратить внимание на название эфиров и изомерию, так как эти вопросы встречаются в заданиях централизованного тестирования, например:

Вещество, формула которого по систематической номенклатуре ИЮПАК называется :

1. диэтиловый эфир

3. этилпропаноат

2. этилпропиловый эфир

4. этилпропионат

III. Домашнее задание

- 1. Составить уравнения реакций по раздаточным таблицам.
- 2. Как из углеводорода (предельного, непредельного) перейти к сложному эфиру? Составить свои «цепочки» превращений и осуществить их.
 - 3. Записать структурные формулы эфиров по цветным фото.

Ароматерапия — лечение запахами. Создаваемыми эфирными маслами. Эфирные масла — это смеси летучих органических соединений, в основном терпенов и терпеноидов. Они предствляют собой жидкие вещества, практически нерастворимые в воде, но хорошо растворимые в органических растворителях. Терпены — ненасыщенные углеводороды состава (С5Н8)н, где н больше или равно 2. Иногда их рассматривают как продукты полимеризации изопрена (2-метилбутадиена-1,3), хотя пути их биосинтеза различные. К терпеноидам относятся сложные эфиры, спирты, кетоны, альдегиды и другие вещества, которые в эфирных маслах сопутствуют терпенам.

Пахучие вещества, попадая на рефлексогенные точки в слизистой оболочке носовой полости, вызывают импульсы, которые проецируются на определенные зоны головного мозга и воздействуют на конкретные органы. Противопоказания к применению эфирных масел связаны с их индивидуальной непереносимостью отдельными людьми.

Растения	Применение эфирных масел				
Бархатцы	При нервозности. Действуют расслабляющее и согревающее				
Валериана	При бессоннице, болезнях сердечно- сосудистой системы,				
	щитовидной железы, астме, эпилепсии, истерии				
Жасмин	При стрессах				
Мята	Восстанавливает силы, снимает нервное перевозбуждение,				
	уменьшает реактивность кожи при соприкосновении с				
	раздражающими веществами. Используется также при тошноте,				
	рвоте, укачивании в транспорте, сердечных болях, спазмах и				
	колитах в кишечнике и желудке				
Роза	Нормализует работу сальных и потовых желез внутренней				
	секреции. При мигренях, головокружениях, слабости.				
	Ликвидирует инфильтраты				
Фиалка	При анемии, артритах гастритах, болезни Боткина, ангинах,				
	зуде, диатезе				